Simple complete Boolean algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Complete Boolean Algebras

For every regular cardinal κ there exists a simple complete Boolean algebra with κ generators.

متن کامل

Complete Ccc Boolean Algebras

Let B be a complete ccc Boolean algebra and let τs be the topology on B induced by the algebraic convergence of sequences in B. 1. Either there exists a Maharam submeasure on B or every nonempty open set in (B, τs) is topologically dense. 2. It is consistent that every weakly distributive complete ccc Boolean algebra carries a strictly positive Maharam submeasure. 3. The topological space (B, τ...

متن کامل

Complete Quotient Boolean Algebras

For I a proper, countably complete ideal on P(X) for some set X , can the quotient Boolean algebra P(X)/I be complete? This question was raised by Sikorski [Si] in 1949. By a simple projection argument as for measurable cardinals, it can be assumed that X is an uncountable cardinal κ, and that I is a κ-complete ideal on P(κ) containing all singletons. In this paper we provide consequences from ...

متن کامل

2 2 Ju n 20 04 SIMPLE COMPLETE BOOLEAN ALGEBRAS

For every regular cardinal κ there exists a simple complete Boolean algebra with κ generators.

متن کامل

A Note on Complete Boolean Algebras

1. Introduction. Among commutative rings, Boolean algebras stand just below fields in simplicity of structure. In contrast, little is known concerning their classification. The purpose of this paper is to present a decomposition theorem for complete Boolean algebras, which, in a small way, simplifies the classification problem. As an illustration of how this decomposition theorem can be used, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 1974

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02758124